skip to main content


Search for: All records

Creators/Authors contains: "Kochkova, Anastasia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Films of α-Ga2O3 (Sn) grown by Halide Vapor Phase Epitaxy (HVPE) on sapphire with starting net donor densities in the range 5×1015- 8.4×1019 cm-3 were irradiated at room temperature with 1.1 MeV protons to fluences from 1013 -1016 cm-2. For the lowest doped samples, the carrier removal rate was ~35 cm-1 at 1014 cm-2 and ~1.3 cm-1 for 1015 cm-2 proton fluence. The observed removal rate could be accounted for by the introduction of deep acceptors with optical ionization energies of 2 eV, 2.8 eV and 3.1 eV. For doped samples doped at 4x1018 cm-3, the initial electron removal rate was 5×103 cm-1 for 1015 cm-2 proton fluence and ~300 cm-1 for 1016 cm-2 proton fluence. The same deep acceptors were observed in photocapacitance spectra, but their introduction rate was orders of magnitude lower than the carrier removal rate. For the heaviest doped samples, an electron removal rate could be measured only after irradiation with the highest proton fluence of 1016 cm-2 and was close to that measured for the 4×1018 cm-3 sample after exposure to the same fluence. Possible reasons for the observed behavior are discussed and radiation tolerances of lightly doped α-Ga2O3 films is higher than for similarly doped β-Ga2O3 layers.  
    more » « less
    Free, publicly-accessible full text available May 9, 2024
  2. The microstructural changes and degradation under forward bias of verticalβ-Ga2O3rectifiers were observed by in-situ transmission electron microscopy. The devices show both a voltage dependence for the onset of visible degradation as well as a time dependence at this threshold voltage, suggesting a defect percolation process is occurring. The degraded rectifiers show a large decrease in forward current and different types of crystal defects are present, including stacking fault tetrahedra, microcracks, Ga-rich droplets and Au inclusions from the top electrode. Continued forward bias stressing is known to lead to macro-cracks oriented along the [010] crystal orientation and eventual delamination of the epitaxial drift layer, but this study is the first to provide insight into the appearance of the smaller defects that precede the large scale mechanical failure of the rectifiers. The initial stages of bias stressing also produce an increase in deep trap states near EC−1.2 eV.

     
    more » « less
  3. We report on growth and electrical properties of α-Ga2O3films prepared by halide vapor phase epitaxy (HVPE) at 500 °C on α-Cr2O3buffers predeposited on sapphire by magnetron sputtering. The α-Cr2O3buffers showed a wide microcathodoluminescence (MCL) peak near 350 nm corresponding to the α-Cr2O3bandgap and a sharp MCL line near 700 nm due to the Cr+intracenter transition. Ohmic contacts to Cr2O3were made with both Ti/Au or Ni, producing linear current–voltage ( I– V) characteristics over a wide temperature range with an activation energy of conductivity of ∼75 meV. The sign of thermoelectric power indicated p-type conductivity of the buffers. Sn-doped, 2- μm-thick α-Ga2O3films prepared on this buffer by HVPE showed donor ionization energies of 0.2–0.25 eV, while undoped films were resistive with the Fermi level pinned at ECof 0.3 eV. The I– V and capacitance–voltage ( C– V) characteristics of Ni Schottky diodes on Sn-doped samples using a Cr2O3buffer indicated the presence of two face-to-face junctions, one between n-Ga2O3and p-Cr2O3, the other due to the Ni Schottky diode with n-Ga2O3. The spectral dependence of the photocurrent measured on the structure showed the presence of three major deep traps with optical ionization thresholds near 1.3, 2, and 2.8 eV. Photoinduced current transient spectroscopy spectra of the structures were dominated by deep traps with an ionization energy of 0.95 eV. These experiments suggest another pathway to obtain p–n heterojunctions in the α-Ga2O3system.

     
    more » « less